Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.286
Filtrar
1.
Arch Insect Biochem Physiol ; 115(4): e22108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572532

RESUMEN

In this study, we employed high-throughput sequencing technology to determine the complete mitochondrial genomes of six ground beetles, encompassing five Harpalinae species and one Carabinae species. The sizes of mitochondrial genomes ranged from 15,334 to 16,972 bp, encompassing 37 genes, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Furthermore, each species was found to possess a putative control region. Combining with 65 published mitochondrial genome sequences of Carabidae as ingroups and four species from Trachypachidae, Gyrinidae and Dytiscidae as outgroups, we conducted phylogenetic analyses utilizing Maximum likelihood and Bayesian inference methods. Moreover, we reconstructed a species tree of Carabidae based on mitochondrial genome data using the coalescent-based species tree method (ASTRAL). The results revealed that the family Carabidae was not a monophyletic group. The subfamily Harpalinae was supported to be a monophyletic group in Maximum likelihood analysis. Although the subfamily Carabinae was found to be nonmonophyletic in the concatenation analyses under both Maximum likelihood and Bayesian inference criteria, it was identified as a monophyletic group in the species tree analysis.


Asunto(s)
Escarabajos , Genoma Mitocondrial , Animales , Filogenia , Escarabajos/genética , Teorema de Bayes
2.
BMC Plant Biol ; 24(1): 255, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594641

RESUMEN

BACKGROUND: Orchidaceae is one of the largest groups of angiosperms, and most species have high economic value and scientific research value due to their ornamental and medicinal properties. In China, Chinese Cymbidium is a popular ornamental orchid with high economic value and a long history. However, to date, no detailed information on the mitochondrial genome of any species of Chinese Cymbidium has been published. RESULTS: Here, we present the complete assembly and annotation of the mitochondrial genome of Cymbidium ensifolium (L.) Sw. The mitogenome of C. ensifolium was 560,647 bp in length and consisted of 19 circular subgenomes ranging in size from 21,995 bp to 48,212 bp. The genome encoded 35 protein-coding genes, 36 tRNAs, 3 rRNAs, and 3405 ORFs. Repeat sequence analysis and prediction of RNA editing sites revealed a total of 915 dispersed repeats, 162 simple repeats, 45 tandem repeats, and 530 RNA editing sites. Analysis of codon usage showed a preference for codons ending in A/T. Interorganellar DNA transfer was identified in 13 of the 19 chromosomes, with plastid-derived DNA fragments representing 6.81% of the C. ensifolium mitochondrial genome. The homologous fragments of the mitochondrial genome and nuclear genome were also analysed. Comparative analysis showed that the GC content was conserved, but the size, structure, and gene content of the mitogenomes varied greatly among plants with multichromosomal mitogenome structure. Phylogenetic analysis based on the mitogenomes reflected the evolutionary and taxonomic statuses of C. ensifolium. Interestingly, compared with the mitogenomes of Cymbidium lancifolium Hook. and Cymbidium macrorhizon Lindl., the mitogenome of C. ensifolium lost 8 ribosomal protein-coding genes. CONCLUSION: In this study, we assembled and annotated the mitogenome of C. ensifolium and compared it with the mitogenomes of other Liliidae and plants with multichromosomal mitogenome structures. Our findings enrich the mitochondrial genome database of orchid plants and reveal the rapid structural evolution of Cymbidium mitochondrial genomes, highlighting the potential for mitochondrial genes to help decipher plant evolutionary history.


Asunto(s)
Genoma Mitocondrial , Orchidaceae , Genoma Mitocondrial/genética , Filogenia , Mitocondrias/genética , ADN , Orchidaceae/genética
4.
BMC Genomics ; 25(1): 322, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561677

RESUMEN

BACKGROUND: Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS: In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS: This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Lamiales , Filogenia , ADN Mitocondrial/genética , Lamiales/genética , Mitocondrias/genética
5.
Gene ; 8942024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38572145

RESUMEN

The Lemon shark Negaprion brevirostris is an important species experiencing conservation issues that is in need of genomic resources. Herein, we conducted a genome survey sequencing in N. brevirostris and determined genome size, explored repetitive elements, assembled and annotated the 45S rRNA DNA operon, and assembled and described in detail the mitochondrial genome. Lastly, the phylogenetic position of N. brevirostris in the family Carcharhinidae was examined using translated protein coding genes. The estimated haploid genome size ranged between 2.29 and 2.58 Gbp using a k-mer analysis, which is slightly below the genome size estimated for other sharks belonging to the family Carcharhinidae. Using a k-mer analysis, approx. 64-71 % of the genome of N. brevirostris was composed of repetitive elements. A relatively large proportion of the 'repeatome' could not be annotated. Taking into account only annotated repetitive elements, Class I - Long Interspersed Nuclear Element (LINE) were the most abundant repetitive elements followed by Class I - Penelope and Satellite DNA. The nuclear ribosomal operon was fully assembled. The AT-rich complete mitochondrial genome was 16,703 bp long and encoded 13 protein coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Negaprion brevirostris is closely related to the genera Carcharhinus, Glyphis and Lamiopsis in the family Carcharinidae. This new genomic resources will aid with the development of conservation plans for this large coastal shark.


Asunto(s)
Genoma Mitocondrial , Tiburones , Animales , Tamaño del Genoma , Filogenia , ADN , Tiburones/genética
6.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612593

RESUMEN

The genetic contributions of Neanderthals to the modern human genome have been evidenced by the comparison of present-day human genomes with paleogenomes. Neanderthal signatures in extant human genomes are attributed to intercrosses between Neanderthals and archaic anatomically modern humans (AMHs). Although Neanderthal signatures are well documented in the nuclear genome, it has been proposed that there is no contribution of Neanderthal mitochondrial DNA to contemporary human genomes. Here we show that modern human mitochondrial genomes contain 66 potential Neanderthal signatures, or Neanderthal single nucleotide variants (N-SNVs), of which 36 lie in coding regions and 7 result in nonsynonymous changes. Seven N-SNVs are associated with traits such as cycling vomiting syndrome, Alzheimer's disease and Parkinson's disease, and two N-SNVs are associated with intelligence quotient. Based on recombination tests, principal component analysis (PCA) and the complete absence of these N-SNVs in 41 archaic AMH mitogenomes, we conclude that convergent evolution, and not recombination, explains the presence of N-SNVs in present-day human mitogenomes.


Asunto(s)
Enfermedad de Alzheimer , Genoma Mitocondrial , Hombre de Neandertal , Humanos , Animales , Hombre de Neandertal/genética , Mutación , Nucleótidos
7.
J Helminthol ; 98: e33, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38618902

RESUMEN

We first sequenced and characterised the complete mitochondrial genome of Toxocara apodeme, then studied the evolutionary relationship of the species within Toxocaridae. The complete mitochondrial genome was amplified using PCR with 14 specific primers. The mitogenome length was 14303 bp in size, including 12 PCGs (encoding 3,423 amino acids), 22 tRNAs, 2 rRNAs, and 2 NCRs, with 68.38% A+T contents. The mt genomes of T. apodemi had relatively compact structures with 11 intergenic spacers and 5 overlaps. Comparative analyses of the nucleotide sequences of complete mt genomes showed that T. apodemi had higher identities with T. canis than other congeners. A sliding window analysis of 12 PCGs among 5 Toxocara species indicated that nad4 had the highest sequence divergence, and cox1 was the least variable gene. Relative synonymous codon usage showed that UUG, ACU, CCU, CGU, and UCU most frequently occurred in the complete genomes of T. apodemi. The Ka/Ks ratio showed that all Toxocara mt genes were subject to purification selection. The largest genetic distance between T. apodemi and the other 4 congeneric species was found in nad2, and the smallest was found in cox2. Phylogenetic analyses based on the concatenated amino acid sequences of 12 PCGs demonstrated that T. apodemi formed a distinct branch and was always a sister taxon to other congeneric species. The present study determined the complete mt genome sequences of T. apodemi, which provide novel genetic markers for further studies of the taxonomy, population genetics, and systematics of the Toxocaridae nematodes.


Asunto(s)
Ascaridoidea , Genoma Mitocondrial , Animales , Toxocara/genética , Filogenia , Evolución Biológica , Murinae
8.
BMC Plant Biol ; 24(1): 303, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644497

RESUMEN

BACKGROUND: Corydalis DC., the largest genus in the family Papaveraceae, comprises > 465 species. Complete plastid genomes (plastomes) of Corydalis show evolutionary changes, including syntenic arrangements, gene losses and duplications, and IR boundary shifts. However, little is known about the evolution of the mitochondrial genome (mitogenome) in Corydalis. Both the organelle genomes and transcriptomes are needed to better understand the relationships between the patterns of evolution in mitochondrial and plastid genomes. RESULTS: We obtained complete plastid and mitochondrial genomes from Corydalis pauciovulata using a hybrid assembly of Illumina and Oxford Nanopore Technologies reads to assess the evolutionary parallels between the organelle genomes. The mitogenome and plastome of C. pauciovulata had sizes of 675,483 bp and 185,814 bp, respectively. Three ancestral gene clusters were missing from the mitogenome, and expanded IR (46,060 bp) and miniaturized SSC (202 bp) regions were identified in the plastome. The mitogenome and plastome of C. pauciovulata contained 41 and 67 protein-coding genes, respectively; the loss of genes was a plastid-specific event. We also generated a draft genome and transcriptome for C. pauciovulata. A combination of genomic and transcriptomic data supported the functional replacement of acetyl-CoA carboxylase subunit ß (accD) by intracellular transfer to the nucleus in C. pauciovulata. In contrast, our analyses suggested a concurrent loss of the NADH-plastoquinone oxidoreductase (ndh) complex in both the nuclear and plastid genomes. Finally, we performed genomic and transcriptomic analyses to characterize DNA replication, recombination, and repair (DNA-RRR) genes in C. pauciovulata as well as the transcriptomes of Liriodendron tulipifera and Nelumbo nuicifera. We obtained 25 DNA-RRR genes and identified their structure in C. pauciovulata. Pairwise comparisons of nonsynonymous (dN) and synonymous (dS) substitution rates revealed that several DNA-RRR genes in C. pauciovulata have higher dN and dS values than those in N. nuicifera. CONCLUSIONS: The C. pauciovulata genomic data generated here provide a valuable resource for understanding the evolution of Corydalis organelle genomes. The first mitogenome of Papaveraceae provides an example that can be explored by other researchers sequencing the mitogenomes of related plants. Our results also provide fundamental information about DNA-RRR genes in Corydalis and their related rate variation, which elucidates the relationships between DNA-RRR genes and organelle genome stability.


Asunto(s)
Corydalis , Genoma Mitocondrial , Genoma de Plastidios , Corydalis/genética , Evolución Molecular , Filogenia , Genoma de Planta , Transcriptoma
9.
Sci Data ; 11(1): 419, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653995

RESUMEN

Tortricidae is one of the largest families in Lepidoptera, including subfamilies of Tortricinae, Olethreutinae, and Chlidanotinae. Here, we assembled the gap-free genome for the subfamily Chlidanotinae using Illumina, Nanopore, and Hi-C sequencing from Polylopha cassiicola, a pest of camphor trees in southern China. The nuclear genome is 302.03 Mb in size, with 36.82% of repeats and 98.4% of BUCSO completeness. The karyotype is 2n = 44 for males. We identified 15412 protein-coding genes, 1052 tRNAs, and 67 rRNAs. We also determined the mitochondrial genome of this species and annotated 13 protein-coding genes, 22 tRNAs, and one rRNA. These high-quality genomes provide valuable information for studying phylogeny, karyotypic evolution, and adaptive evolution of tortricid moths.


Asunto(s)
Genoma de los Insectos , Genoma Mitocondrial , Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Masculino , Filogenia , China , ARN de Transferencia/genética , Cariotipo
10.
Sci Adv ; 10(15): eadj0954, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608027

RESUMEN

Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Asikli Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Asikli Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Asikli Höyük's occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations.


Asunto(s)
Genoma Mitocondrial , Animales , Ovinos/genética , Filogenia , Oveja Doméstica/genética , Turquia , África
11.
BMC Genomics ; 25(1): 388, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649808

RESUMEN

BACKGROUND: Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS: Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS: Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Myxozoa , Filogenia , Animales , Myxozoa/genética , Myxozoa/clasificación , Complejo IV de Transporte de Electrones/genética
12.
BMC Ecol Evol ; 24(1): 42, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589809

RESUMEN

BACKGROUND: Species flocks in ancient lakes, and particularly those arising from adaptive radiation, make up the bulk of overall taxonomic and morphological diversity in these insular ecosystems. For these mostly young species assemblages, classical mitochondrial barcoding markers have so far been key to disentangle interspecific relationships. However, with the rise and further development of next-generation sequencing (NGS) methods and mapping tools, genome-wide data have become an increasingly important source of information even for non-model groups. RESULTS: Here, we provide, for the first time, a comprehensive mitogenome dataset of freshwater gastropods endemic to Sulawesi and thus of an ancient lake invertebrate species flock in general. We applied low-coverage whole-genome sequencing for a total of 78 individuals including 27 out of the 28 Tylomelania morphospecies from the Malili lake system as well as selected representatives from Lake Poso and adjacent catchments. Our aim was to assess whether mitogenomes considerably contribute to the phylogenetic resolution within this young species flock. Interestingly, we identified a high number of variable and parsimony-informative sites across the other 'non-traditional' mitochondrial loci. However, although the overall support was very high, the topology obtained was largely congruent with previously published single-locus phylogenies. Several clades remained unresolved and a large number of species was recovered polyphyletic, indicative of both rapid diversification and mitochondrial introgression. CONCLUSIONS: This once again illustrates that, despite the higher number of characters available, mitogenomes behave like a single locus and thus can only make a limited contribution to resolving species boundaries, particularly when introgression events are involved.


Asunto(s)
Gastrópodos , Genoma Mitocondrial , Humanos , Animales , Filogenia , Genoma Mitocondrial/genética , Gastrópodos/genética , Ecosistema , Lagos
13.
Sci Rep ; 14(1): 7840, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570596

RESUMEN

Using a combination of short- and long-reads sequencing, we were able to sequence the complete mitochondrial genome of the invasive 'New Zealand flatworm' Arthurdendyus triangulatus (Geoplanidae, Rhynchodeminae, Caenoplanini) and its two complete paralogous nuclear rRNA gene clusters. The mitogenome has a total length of 20,309 bp and contains repetitions that includes two types of tandem-repeats that could not be solved by short-reads sequencing. We also sequenced for the first time the mitogenomes of four species of Caenoplana (Caenoplanini). A maximum likelihood phylogeny associated A. triangulatus with the other Caenoplanini but Parakontikia ventrolineata and Australopacifica atrata were rejected from the Caenoplanini and associated instead with the Rhynchodemini, with Platydemus manokwari. It was found that the mitogenomes of all species of the subfamily Rhynchodeminae share several unusual structural features, including a very long cox2 gene. This is the first time that the complete paralogous rRNA clusters, which differ in length, sequence and seemingly number of copies, were obtained for a Geoplanidae.


Asunto(s)
Genoma Mitocondrial , Platelmintos , Animales , Platelmintos/genética , Genoma Mitocondrial/genética , Secuencias Repetitivas de Ácidos Nucleicos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico/genética
14.
PLoS One ; 19(3): e0299524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507343

RESUMEN

Parchment, the skins of animals prepared for use as writing surfaces, offers a valuable source of genetic information. Many have clearly defined provenance, allowing for the genetic findings to be evaluated in temporal and spatial context. While these documents can yield evidence of the animal sources, the DNA contained within these aged skins is often damaged and fragmented. Previously, genetic studies targeting parchment have used destructive sampling techniques and so the development and validation of non-destructive sampling methods would expand opportunities and facilitate testing of more precious documents, especially those with historical significance. Here we present genetic data obtained by non-destructive sampling of eight parchments spanning the 15th century to the modern day. We define a workflow for enriching the mitochondrial genome (mtGenome), generating next-generation sequencing reads to permit species identification, and providing interpretation guidance. Using sample replication, comparisons to destructively sampled controls, and by establishing authentication criteria, we were able to confidently assign full/near full mtGenome sequences to 56.3% of non-destructively sampled parchments, each with greater than 90% of the mtGenome reference covered. Six of eight parchments passed all four established thresholds with at least one non-destructive sample, highlighting promise for future studies.


Asunto(s)
ADN , Genoma Mitocondrial , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Piel , Manejo de Especímenes
15.
BMC Genomics ; 25(1): 298, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509489

RESUMEN

Mitochondrial genomes play important roles in studying genome evolution, phylogenetic analyses, and species identification. Amphipods (Class Malacostraca, Order Amphipoda) are one of the most ecologically diverse crustacean groups occurring in a diverse array of aquatic and terrestrial environments globally, from freshwater streams and lakes to groundwater aquifers and the deep sea, but we have a limited understanding of how habitat influences the molecular evolution of mitochondrial energy metabolism. Subterranean amphipods likely experience different evolutionary pressures on energy management compared to surface-dwelling taxa that generally encounter higher levels of predation and energy resources and live in more variable environments. In this study, we compared the mitogenomes, including the 13 protein-coding genes involved in the oxidative phosphorylation (OXPHOS) pathway, of surface and subterranean amphipods to uncover potentially different molecular signals of energy metabolism between surface and subterranean environments in this diverse crustacean group. We compared base composition, codon usage, gene order rearrangement, conducted comparative mitogenomic and phylogenomic analyses, and examined evolutionary signals of 35 amphipod mitogenomes representing 13 families, with an emphasis on Crangonyctidae. Mitogenome size, AT content, GC-skew, gene order, uncommon start codons, location of putative control region (CR), length of rrnL and intergenic spacers differed between surface and subterranean amphipods. Among crangonyctid amphipods, the spring-dwelling Crangonyx forbesi exhibited a unique gene order, a long nad5 locus, longer rrnL and rrnS loci, and unconventional start codons. Evidence of directional selection was detected in several protein-encoding genes of the OXPHOS pathway in the mitogenomes of surface amphipods, while a signal of purifying selection was more prominent in subterranean species, which is consistent with the hypothesis that the mitogenome of surface-adapted species has evolved in response to a more energy demanding environment compared to subterranean amphipods. Overall, gene order, locations of non-coding regions, and base-substitution rates points to habitat as an important factor influencing the evolution of amphipod mitogenomes.


Asunto(s)
Anfípodos , Genoma Mitocondrial , Humanos , Animales , Anfípodos/genética , Filogenia , Codón Iniciador , Evolución Molecular
16.
Sci Rep ; 14(1): 7009, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528107

RESUMEN

Chibiraga is a mall East Asian genus in the family Limacodidae (slug-moths). The latter includes many agricultural pests. Mitochondrial genome analysis is an important tool for studying insect molecular identification and phylogenetics. However, there are very few mitogenome sequences available for Limacodidae species, and none for the genus Chibiraga at all. To explore the mitogenome features of Chibiraga and verify its phylogenetic position, the complete mitogenome of Chibiraga houshuaii was sequenced and annotated. The complete 15,487 bp genome encoded 37 mitochondrial genes, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region (CR). Most of the PCGs had typical ATN start codons and terminated with TAA or a single T residue. UUA (Leu2), AUU (Ile), UUU (Phe), AUA (Met) and AAU (Asn) were the five most frequently used codons. All tRNAs were folded into cloverleaf secondary structure, except for trnS1, which lacked the DHU arm. Phylogenetic analyses within the superfamily Zygaenoidea were performed based on multiple datasets from mitochondrial genes. The results showed that the families Phaudidae, Limacodidae and Zygaenidae were respectively recovered as monophyly; C. houshuaii was clustered in a clade with nettle type larvae in Limacodidae.


Asunto(s)
Genoma Mitocondrial , Lepidópteros , Mariposas Nocturnas , Humanos , Animales , Lepidópteros/genética , Genoma Mitocondrial/genética , Filogenia , ARN Ribosómico/genética , ARN Ribosómico/química , Mariposas Nocturnas/genética , ARN de Transferencia/genética , ARN de Transferencia/química
17.
Sci Rep ; 14(1): 7119, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531918

RESUMEN

The coffee leaf miner (Leucoptera coffeella) is one of the major pests of coffee crops in the neotropical regions, and causes major economic losses. Few molecular data are available to identify this pest and advances in the knowledge of the genome of L. coffeella will contribute to improving pest identification and also clarify taxonomy of this microlepidoptera. L. coffeella DNA was extracted and sequenced using PacBio HiFi technology. Here we report the complete L. coffeella circular mitochondrial genome (16,407 bp) assembled using Aladin software. We found a total of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T rich-region and a D-loop. The L. coffeella mitochondrial gene organization is highly conserved with similarities to lepidopteran mitochondrial gene rearrangements (trnM-trnI-trnQ). We concatenated the 13 PCG to construct a phylogenetic tree and inferred the relationship between L. coffeella and other lepidopteran species. L. coffeella is found in the Lyonetiidae clade together with L. malifoliella and Lyonetia clerkella, both leaf miners. Interestingly, this clade is assigned in the Yponomeutoidea superfamily together with Gracillariidae, and both superfamilies displayed species with leaf-mining feeding habits.


Asunto(s)
Genoma Mitocondrial , Lepidópteros , Mariposas Nocturnas , Animales , Lepidópteros/genética , Filogenia , Mariposas Nocturnas/genética , Secuencia de Bases , Genes Mitocondriales , ARN de Transferencia/genética
18.
Sci Rep ; 14(1): 7120, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531924

RESUMEN

The Japanese beetle Popillia japonica is a pest insect that feeds on hundreds of species of wild and cultivated plants including important fruit, vegetable, and field crops. Native to Japan, the pest has invaded large areas of the USA, Canada, the Azores (Portugal), Italy, and Ticino (Switzerland), and it is considered a priority for control in the European Union. We determined the complete mitochondrial genome sequence in 86 individuals covering the entire distribution of the species. Phylogenetic analysis supports a major division between South Japan and Central/North Japan, with invasive samples coming from the latter. The origin of invasive USA samples is incompatible, in terms of the timing of the event, with a single introduction, with multiple Japanese lineages having been introduced and one accounting for most of the population expansion locally. The origin of the two invasive European populations is compatible with two different invasions followed by minimal differentiation locally. Population analyses provide the possibility to estimate the rate of sequence change from the data and to date major invasion events. Demographic analysis identifies a population expansion followed by a period of contraction prior to the invasion. The present study adds a time and demographic dimension to available reconstructions.


Asunto(s)
Escarabajos , Genoma Mitocondrial , Animales , Escarabajos/genética , Filogenia , Plantas/genética , Demografía
19.
J Insect Sci ; 24(2)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536151

RESUMEN

The rape stem weevil (Ceutorhynchus asper Roel.) and its close relatives primarily breed on cruciferous plants and cause severe damage to rapeseed production. However, their genetic and molecular information is still scarce. Here, we generated mitogenomes for both C. asper and Ceutorhynchus albosuturalis. The lengths of the 2 mitochondrial genomes are 14,207 bp (C. asper) and 15,373 bp (C. albosuturalis), and both weevils exhibit identical numbers of protein-coding genes with the absence of trnI. A + T contents for both mitogenomes are high (80% and 79.9%, respectively). Haplotype and genetic distance analyses showed that the genetic differentiation of C. asper populations in northwestern China is low. Based on 5 datasets from mitogenomes, phylogenetic analyses with maximum-likelihood and Bayesian methods show that both species (C. asper and C. albosuturalis) fall in the CCCMS clade (Curculioninae, Conoderinae, Cossoninae, Molytinae, and Scolytinae) of Curculionidae and belong to clades H and I of the genus Ceutorhynchus, respectively. Larvae of the clade H weevils mainly are borers in petioles or stems of cruciferous plants, while larvae of the clade I weevils mainly inhabit the fruits of the same plants, suggesting that ecological niche specialization can play a critical role in the diversification of Ceutorhynchus species. This study generates baseline molecular and genetic information for future research of Ceutorhynchus-related taxa and provides insights into the phylogeny and evolution of Curculionidae.


Asunto(s)
Brassica rapa , Escarabajos , Genoma Mitocondrial , Gorgojos , Animales , Filogenia , Teorema de Bayes , Larva
20.
Front Biosci (Schol Ed) ; 16(1): 6, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38538346

RESUMEN

BACKGROUND: Metabolic disorders, including obesity, are often accompanied by an increased risk of cardiovascular complications. Monocytes are the common link between obesity and cardiovascular diseases (CVDs). The bias of innate cellular immunity towards pro-inflammatory activation stimulates the development of diseases associated with chronic inflammation, in particular metabolic disorders, including obesity, as well as CVDs. Disorders in the functional state of monocytes and activation of inflammation may be associated with mitochondrial dysfunction. Mutations accumulating in mitochondrial DNA with age may lead to mitochondrial dysfunction and may be considered a potential marker for developing chronic inflammatory diseases. METHODS: The present study aimed to study the relationship between mitochondrial heteroplasmy in CD14+ monocytes and cardiovascular risk factors in 22 patients with obesity and coronary heart disease (CHD) by comparing them to 22 healthy subjects. RESULTS: It was found that single-nucleotide variations (SNV) A11467G have a negative correlation with total cholesterol (r = -0.82, p < 0.05), low density lipoproteins (LDL) (r = -0.82, p < 0.05), with age (r = -0.57, p < 0.05) and with mean carotid intima-media thickness (cIMT) (r = -0.43, p < 0.05) and a positive correlation with HDL level (r = 0.71, p < 0.05). SNV 576insC positively correlated with body mass index (BMI) (r = 0.60, p < 0.001) and LDL level (r = 0.43, p < 0.05). SNV A1811G positively correlated with mean cIMT (r = 0.60, p < 0.05). CONCLUSIONS: It was revealed that some variants of mitochondrial DNA (mtDNA) heteroplasmy are associated with CVD risk factors. The results demonstrate the potential for using these molecular genetic markers to develop personalized CVD and metabolic disorder treatments.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Coronaria , Genoma Mitocondrial , Enfermedades Metabólicas , Enfermedades Mitocondriales , Humanos , Grosor Intima-Media Carotídeo , Monocitos , Genoma Mitocondrial/genética , Enfermedad Coronaria/genética , Obesidad/complicaciones , Obesidad/genética , Factores de Riesgo , Inflamación , Biomarcadores , Mutación/genética , ADN Mitocondrial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...